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J. Phys. A: Math. Gen., Vol. 9, No. 8. 1976. Printed in Great Britain. @ 1976 

On the limit of approximate solutions of generator coordinate 
integral equations 

L Lathouwers 
Dienst voor Theoretische en Wiskundige Natuurkunde, Rijksuniversitair Centrum 
Antwerpen, Antwerp, Belgium 

Received 11 February 1976, in final form 7 April 1976 

Abstract. By formulating the generator coordinate method for bound states as a super- 
eigenvalue problem and using a Weyl theorem we provide a mathematical background for 
the commonly used approximation schemes to solve the Hill-Wheeler integral equation. 

1. Introduction: the Hill-Wheeler eigenvalue problem? 

In the generator coordinate method (GCM) (Hill and Wheeler 1953, Wheeler 1955, 
Griffin and Wheeler 1957) one starts out from a trial function 

which is a superposition of continuously labelled basis functions 4(xla) each having a 
weight f (a) .  The labels a, known as generator coordinates (GC), are parameters which 
play an intermediate role since they do not appear in the final wavefunction. The 
variational principle, applied to the above trial function, yields an integral equation, the 
Hill-Wheeler equation (HW equation), for the unknown weights f ( a )  

J w ~ ,  PI  EA\(^, PMP) d~ = 0. (1.2) 

The Hamiltonian kernel H(a, P )  and the overlap kernel A(a, 8) defined by 

W a ,  P )  = [ 4 * ( x b ) W ( x I P )  dx A b ,  P )  = [4*bb)4blP)  dx (1.3) 

are clearly Hermitian 

*(a, 8) = m a ,  P )  A*(& P )  = U P ,  .I. (1.4) 

Supplemented with a boundary condition the HW equation defines an eigenvalue 
problem. The GCM has been applied extensively in nuclear physics to both bound states 
and scattering problems (Lathouwers 1974$). Whereas in scattering applications one 
requires +(x) to have a certain asymptotic behaviour, the boundary condition for bound 

t It is assumed throughout that both f ( a )  and 4(xla) satisfy the necessary conditions for interchanging 
integrations. 
$ Available on request at SCK-CEN Boeretang 200, 2400 Mol, Belgium. 
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1236 L Lathouwers 

state problems is simply that f(a) should generate square integrable (2”) trial functions, 
i.e., 

Thus 9’ wavefunctions correspond to weights having a finite norm in the non-diagonal 
metric A(a, p ) .  

In general, the analytical solution of the eigenvalue problem (1.2) + (1.5) is impos- 
sible. One must therefore rely upon approximation schemes, the most simple one being 
to replace the integral (1.2) by a finite sum: 

N 

(H(a , ,  bi) - EA(ai, aj))f(ai) = 0. 
~ 

j=1  

Using this discretization technique one can run into two kinds of problems as one 
increases the number of mesh points. The first one is due to the non-orthogonality of 
the functions 4(xlai) and is known as approximate linear dependence. It can, to a 
certain degree, be eliminated by applying canonical orthonormalization (Lowdin 1956, 
Lathouwers 1976a). Whereas the first problem is a technical one, caused essentially by 
a limited machine accuracy, the second one throws serious doubts upon the validity of 
the discretization procedure. Numerical experience tells us that sometimes, as N 
increases, the coefficients f (a j )  oscillate more and more violently instead of converging 
to a regular weight function. When one studies the properties of the f (a )  theoretically 
(Lathouwers 1976b) one finds that they can behave in a variety of ways ranging from 9’ 
functions over non-2” functions to divergent series expansions and tempered distribu- 
tions. In the latter cases the above oscillation phenomenon occurs. It is the aim of this 
paper to prove that, no matter how the eigenvectors of (1.6) behave, the eigenvalues of 
the discretized HW equation converge to the true solutions of the HW eigenvalue 
problem as N +  W. The theorem to be proved will be more general and applicable to 
any procedure based on a finite expansion of the kernels in some suitable set of 
functions: 

The discretization technique then corresponds to using the stepfunctions, associated 
with the chosen mesh, for the above expansions. 

We will thus provide the necessary mathematical background for the commonly 
used approximation schemes to solve the HW eigenvalue problem. 

2. A super-eigenvalue problem 

The HW equation is not a classical type of integral equation for two reasons. Firstly, it 
involves two kernels instead of one, and secondly, these kernels are not of the 
Hilbert-Schmidt type, i.e., they are not 9’. These two drawbacks can be removed by 
choosing an appropriate normalization for <b(x(cu) (Lathouwers 1976~).  The Hilbert- 
Schmidt theory of Ftedholm integral equations (Tricomi 1957) is therefore at our 
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disposal. For completeness we will give a short summary of the results obtained by 
Lathouwers (19764 

It is a general strategy to choose +(xJa)=Y2 in x and situated in the domain of H for 
all values of a. One can then introduce a renormalization factor 

R ( a )  = r(a)/m=(lb#&)ll, llH4(a)II> (2.1) 

where r(a) is an arbitrary =Y2 function in a, non-zero almost everywhere. The 
renormalized function R(a)r$(xla) yields a 9’ Hamiltonian and overlap kernel, i.e., 
there exist two constants C, and CA such that 

lIA(a, p)(’ da dp  = CA<+oO. (2.3) 

It follows that the kernel K(a, PIE) = H(a, 0) -EA(a,  p )  is 92 for all values of E since 
one readily verifies that 

jIK(a, pIE)(’dol d p  S cH+2(E((C&d”’+E’C~. (2.4) 

The eigenvalue problem 

is therefore a homogeneous Fredholm equation of the second kind with a 9* kernel. Its 
eigenvalues and eigenfunctions depend upon energy as a parameter. The above 
procedure, which eliminates the non-orthogonal metric A(a, p) ,  was introduced by 
Ltiwdin for matrix equations (Liiwdin 1967). He replaced the secular equation for a 
finite non-orthogonal basis by the so called super-secular equation which is the matrix 
analogue of (2.5). Taking over Liidwin’s terminology (2.5) will be referred to as the 
supe r -w  equation. 

In order to study the w equation by the super-mv equation one must establish the 
connection between the eigenvalues and eigenfunctions of these two equations. As for 
the super-eigenvalues A (E) one can show (Lathouwers 1976c) that 

lim h(E)=*03. 
E-+tKl 

Thus the A (E) are monotonically decreasing functions having a single zero point. At Ei, 
the zero point of &(E), the super-mv equation can be written as 

[(H(a,  P)-EiA(a, P))g(B(Ei)  dp = O -  (2.7) 

Hence the w eigenvalues E, are the zeros of the super-eigenvalues &(E) while the 
weights f i (a)  are to be identified with the gi(alEi). We have thus formulated the w 
eigenvalue problem in terms of a classical Fredholm eigenvalue problem depending 
parametrically upon energy. 
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3. Weyl’s theorem and the limit of approximate eigenvalues 

In order to prove that approximate eigenvalues converge to the true solutions one needs 
some tool to compare the eigenvalues of the equations involved. For eigenvalue 
problems of self-adjoint, completely continuous operators there exists an important 
theorem, due to Weyl(1912), which allows one to compare eigenvalues of equal order 
without any previous knowledge concerning their eigenvectors. Weyl’s theorem 
implies that, if Al  and A2 are two self-adjoint completely continuous operators and U!, 

respectively a: their nth eigenvalue, then 

Id- afl+b - 4 2 1 1  (3.1) 

IlAll = suPr(llAfll/llfll). (3.2) 

where the norm of an operator is defined as 

For a 22 kernel, being a completely continuous operator on the space of Z2 functions, 
one readily verifies, using Schwarz’s inequality, that 

1/2 

l l A l I a w = ( j  lA(a,P)12da dP) (3.3) 

Here ((A)) is the norm of A(a,  j3) considered as a z2 function in a and P. As such the 
kernel A(a,  P )  can be expanded in a double Fourier series 

(3.4) 

where {~)~(a)} is a complete set of functions. The equality sign in (3.4) stands for 
convergence in the mean, i.e., convergence in the (( )) norq. From this property of 
(3.4), the inequality (3.3) and Weyl’s theorem, it follows that, for an arbitrary E > 0, 
there exists a number N such that 

lan -ajfY’IcllA - A N l l s ( ( A - A N ) ) < ~  (3.5) 
where AN(a, P )  is the truncation of (3.4) after N terms in m and n. 

expansions 
Since K(a,PIE) is z2, everything stated above applies to it. Truncating the 

kmn ( E )  = hmn - E A m n  

after N terms one obtains a secular and a super-secular equation 
N 

n = l  

N 

n = l  

(hmn - E ( ~ ) A ~ ~ ) c ,  = o 

kmn(E)&(E)  = A‘”(E)dm(E) 

(3.7a) 

(3.7b) 
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which are equivalent to the finite rank integral equations 

J U M a ,  P)-E”’AN(a, P))f”’(B) dP = 0 

JK.(~, /3lE)g”’(PlE) = A”’(E)g”’(a/E). 

( 3 . 8 ~ )  

(3 .86)  

The eigenvalues E:” of ( 3 . 7 ~ )  and ( 3 . 8 ~ )  are the zeros of the super-eigenvalues 
A:”(E) of (3 .7b)  and (3.8b). 

It is clear that the number of terms needed to make the quadratic deviation between 
K(a,PIE) and KN(a,PIE) smaller than E will be a function of E. Let E, be an 
eigenvalue of the HW equation and Ii = [ET, E?] a finite interval containing E,. Then 
putting 

N = supr N(E)  (3.9) 
E E L  

it follows from (3 .5)  that 

I A ~ ( E ) - A ~ ~ ) ( E ) J <  E (3.10) 

for all E in li and consequently 

lim hIN’(E) = h,(E).  (3.11) 
N-m 

Since the curve hi”(E) converges to hi(E)  its zero point E:” goes to E,, i.e., 

lim E!”’ = (3.12) 

which completes the proof of our theorem. The limiting process is illustrated in figure 1 .  
N-KC 

I I 
Figure 1. 

4. Condusion 

It should be noticed that, although the above theorem is completely satisfactory from 
the mathematical point of view, it is of little practical use. Indeed, it gives us no 
information about the precise way in which the E:” converge to the HW eigenvalues E,. 
This results from the fact that we had to make a detour via the super-Hw equation in 
order to apply Weyl’s theorem. The latter theorem is much more powerful since it 
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provides error bounds for the approximate eigenvalues. For real symmetric kernels and 
specific rules for numerical integration explicit error bounds have been given by 
Wielandt (1956). It would be extremely useful if one could generalize Weyl’s theorem 
directly to integral equations of the HW type. 

References 

Griffn J J and Wheeler J A 1957 Phys. Reo. 108 311 
Hill D L and Wheeler J A 1953 Phys. Reo. 89 1102 
Lathouwers L 1975 hoc. 2nd Int. Semin. on Generator Gwrdinate Method for Nuclear Bound States and 

- 1976a Int. J. Quantum Chem. to be published 
- 1976b Ann. Phys. N Y  submitted for publication 
- 1976c J. Math. Phys. to be published 
Lijwdin P 0 1956 Ado. Phys. 5 1 
- 1967 Int. J. Quantum Chem. 1s 811 
Tricomi F G 1957 Integral Equations (New York: Interscience) 
Weyl H 1912 Math. Ann. 71 441 
Wheeler J A 1955 Roc. Conf. on Nuclear and Meson Physics, Glasgow 1954 (Oxford: Pergamon) p 42 
Wielandt H 1956 Roc. 6th Symp. on Applied Mathematics (New York: McGraw-Hill) 

Reactions, Mol, Belgium eds P van Leuven and M Bouten 


